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STUDIES IN MACROLIDE SYNTHESIS: A CONCISE ASYMMETRIC SYNTHESIS OF 
A MACROLIDE INTERMEDIATE FOR THE ERYTHRONOLIDES. 

Ian Paterson,* David D. P. Laffan, and David J. Rawson 
University Chemical Laboramy, Leqtield Road, Cambridge CB2 IEW, UK. 

Summary: The enantiomerically-pure 1Cmembered ring macrolide 1 is prepared in 14 steps fi-om the 
racemic aldehyde 4,Z=SPh. The Q-C4 and Q-Cl0 stereorelationships in 1 are controlled in a single 
an Evans aldol condensation with W-4. Macrolactonisation, 23 + 1, takes place in high yield (91%). 

step by 

The macrolide antibiotics, with their multiple asymmetric centres and complex array of subs&ems and 
functional groups, have been the focus of intense synthetic interest. u While much has aheady been achieved, there is 
still considerable scope for improvements both in methods* and strategy directed towards the more efficient synthesis1 of 
these testing targets and their structural analogues. We have adopted a unified approach to the synthesis of erythmnolides 
A and B, together with 6-deoxyerythronolide B,3 based on a combination of acyclic and macrocyclic stereocontrol 

strategies (see Scheme 1). In our approach, the chiral sequences spanning Cl-C5 and C7-Cl1 in the unsaturated (9S)- 
dihydro derivative 1 are set up in a single asymmetric aldol condensation,” which fully exploits the stereochemical 

relationship between 2 and 3. The remaining stereochemistry and hydroxylation pattem at Cs, c6, C!11, and Cl2 in the 
erythronolides may then be controlled by the conformational bias of the large-ring lactone? We now report a short and 
efficient asymmetric synthesis of the simplified erythronolide derivative 1 (R=TJ3S), which marks the completion of the 

initial stage of this work. 

Scheme 1 cm 

X = Y I OH, erythronoliie A 
X = H, Y - OH, erythronoliie B 
X = Y = H, 6deoxyerythronolide B 

Fig. 1 Crystal structure of low R, aldol adduct 6 

The direct synthesis of Cl-C5 and C7-Cl1 erythronolide fragments is possible by resolution of a racemic 
aldehyde 4 by aldol condensation with a suitable chiral propionate enolate. In our earlier work? this was accomplished 
for (f)4,Z==OBn. by Evans asymmetric aldol methodology6 using the Lvaline derived propionimide 5. We have now 
improved on this key aldol step by adding the di-n-butylboron enolate (*BuzBOTf, imEt, CH2Cl2) of 5 to (f)-4, 
Z=SPh.’ which leads to a 1:l mixture of the two diastcrco~ri~ adducts 6 and 7 in 705% yield on a 10 g scale. The 
replacement of OBn by SPh in this reaction allows easier separation of the aldol adducts 6 and 7; both by flash 
chromatography (R@.37,0.48 in 5% Et2O/CH&) and by fractional crystallisation of 6 (m.p. 43-44OC) from an 
ether/hexane solution of the mixture. The stereochemistry of 6 was established as shown by X-ray crystallography, & 
Fig. 1, while that of 7 was deduced to be epimeric at a single chiral centre by Raney nickel desulphurisation giving the 
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94:6 in favour of 16 (92% yield) by use of Terashima’s (+)-IV-methylephedrine./~+thylanihne chirally-modified LiiH4 

reagent15 at -78’C. Jn contrast, use of (S)-Alpine-Borane @t6 failed to give any detectable allylalcohol, while (R)-(+)- 

binaphthol-modified17 LiiBQ at -104’C gave only 80% stereoselectivity towards 16 (88% yield). Reduction of the 

methyl ester of 16 by DJBAL (Et20, -98°C) then gave the aldehyde 9 in 95% yield, completing the synthesis of the C7- 

Cl3 fragment. 

9 d 82% 

I 

19 
18R=H 73% 

22 23 1 

Scheme 3. (a) NaOMe, M&XI, -23T, u) miw (b) TBSOTf. lutidinc, CWJh, -WC, 0.5 h; (~1 hLi, NOhPOCWC 2% 
HMpA-THF, R=H -78°C. R=Me -42°C. 0.5 h; (d) LiCl, 10 eq., mt.10 eq., MeCN, 4A mol. sieves, 30°C. 72 h; (e) WAA, 
Et3N. DW, CH2Cl2,o”C. 5 min; v) NCS. CC4,SOT. 1 h; HgCl2, McCN/HZO. 20% 1 mk (s) Jones reagens Me&O, 
0”~. ‘&-I min; (/I) NaHCO3,2OT. 3 h; (h) DCC, DMAP, DMAP.HCl. 4A mol. sieves, CHCl3.7OT. 21 h (syringe pump); (0 
2,4,6-Cl3C@2Cml. EQN, ‘IIIF; DMAP, me, 80% 3h. 

For the C&j fragment (Scheme 3). the more polar crystalline adduct 6 was converted into the b- 
ketophosphonate 18 in preparation for Homer-Emmons coupling with 9. Removal of the auxiliary and silylation by 
rBuMe2SiOTf to give 19 was carried out as in 7 + 10. This was followed by the addition of 19 to the lithiated 
derivative of methyl dimethylphosphonate in THF-HMPA to give 18 (63% overall yield from 7). We also prepared the 
Cg-metbylated analogue 21 by use of ethyl dimethylphosphonate. After extensive screening of reagents and conditions, 
we found that the two fIagments 9 and 18 could be coupled in 82% yield to give only the E-enone 22 by modification of 
the method developed by Masamune and Roush (LiCl, 10 eq.. @#Et, 10 eq., MeCN, 4A mol. sieves, 3oOC, 72 h).t8 
However, under these same conditions, no trisubstituted enonets could be obtained from reaction of 9 with 21. This 

&ding necessitates the introduction of the C+j methyl group of the erythmnoliies after macmlactonisation. 
Transformation of 22 to the secoacid 2320 was performed by the following sequence of reactions: 

trifluoroacetylation of the 13-OH (99%); a-chlorination* of the phenylsulphide at Ct (NCS, CC4) followed by direct 
hydrolysis to the aldehyde (HgC12, MeCN&O, 74%); Jones oxidation and NaHCQJ hydrolysis of the trifluoroacetate 
(83%). We were delighted to fmd that the critical macrolactonisation reaction, 23 + 1,” procecdcd in 61% yield under 
the method of Keckzt (DCC, DMAP. DMAP.HCl, 4A mol. sieves, CHC13, 70°C, 21 h). Jf the Yamaguchiz procedure 
(2,4,6-C13C&COCl, EtsN, THF, followed by dilution with PhMe and syringe pump addition over 3h to DMAP in 
PhMe at SOOC) was used, macrolactonisation proceeded in a remark&k 91% yield. The extra confirmational rigidity 

imparted by the s$ carbon skeleton is probably beneticial in pmmoting this macrocyclisation. 
This route provides the enantiomericaJly-pure unsaturated macrolide 1, [I&+ -50.6’ (c 0.9, CHCl3). in 

14 steps from the starting aldehyde (f)-4 and 23% overaJl yield from the aldol adduct 7. Studies towards the elaboration 
of this macrolide intermediate into the erythronolides am underway. 
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